Knowledge Bases for Amazon Bedrock
Overviewβ
This will help you getting started with the AmazonKnowledgeBaseRetriever. For detailed documentation of all AmazonKnowledgeBaseRetriever features and configurations head to the API reference.
Knowledge Bases for Amazon Bedrock is a fully managed support for end-to-end RAG workflow provided by Amazon Web Services (AWS). It provides an entire ingestion workflow of converting your documents into embeddings (vector) and storing the embeddings in a specialized vector database. Knowledge Bases for Amazon Bedrock supports popular databases for vector storage, including vector engine for Amazon OpenSearch Serverless, Pinecone, Redis Enterprise Cloud, Amazon Aurora (coming soon), and MongoDB (coming soon).
Integration detailsβ
| Retriever | Self-host | Cloud offering | Package | Py support | 
|---|---|---|---|---|
| AmazonKnowledgeBaseRetriever | π (see details below) | β | @langchain/aws | β | 
AWS Knowledge Base Retriever can be βself hostedβ in the sense you can run it on your own AWS infrastructure. However it is not possible to run on another cloud provider or on-premises.
Setupβ
In order to use the AmazonKnowledgeBaseRetriever, you need to have an AWS account, where you can manage your indexes and documents. Once youβve setup your account, set the following environment variables:
process.env.AWS_KNOWLEDGE_BASE_ID=your-knowledge-base-id
process.env.AWS_ACCESS_KEY_ID=your-access-key-id
process.env.AWS_SECRET_ACCESS_KEY=your-secret-access-key
If you want to get automated tracing from individual queries, you can also set your LangSmith API key by uncommenting below:
// process.env.LANGSMITH_API_KEY = "<YOUR API KEY HERE>";
// process.env.LANGSMITH_TRACING = "true";
Installationβ
This retriever lives in the @langchain/aws package:
- npm
- yarn
- pnpm
npm i @langchain/aws
yarn add @langchain/aws
pnpm add @langchain/aws
Instantiationβ
Now we can instantiate our retriever:
import { AmazonKnowledgeBaseRetriever } from "@langchain/aws";
const retriever = new AmazonKnowledgeBaseRetriever({
  topK: 10,
  knowledgeBaseId: process.env.AWS_KNOWLEDGE_BASE_ID,
  region: "us-east-2",
  clientOptions: {
    credentials: {
      accessKeyId: process.env.AWS_ACCESS_KEY_ID,
      secretAccessKey: process.env.AWS_SECRET_ACCESS_KEY,
    },
  },
});
Usageβ
const query = "...";
await retriever.invoke(query);
Use within a chainβ
Like other retrievers, AmazonKnowledgeBaseRetriever can be incorporated into LLM applications via chains.
We will need a LLM or chat model:
Pick your chat model:
- OpenAI
- Anthropic
- FireworksAI
- MistralAI
- Groq
- VertexAI
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/openai 
yarn add @langchain/openai 
pnpm add @langchain/openai 
Add environment variables
OPENAI_API_KEY=your-api-key
Instantiate the model
import { ChatOpenAI } from "@langchain/openai";
const llm = new ChatOpenAI({
  model: "gpt-4o-mini",
  temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/anthropic 
yarn add @langchain/anthropic 
pnpm add @langchain/anthropic 
Add environment variables
ANTHROPIC_API_KEY=your-api-key
Instantiate the model
import { ChatAnthropic } from "@langchain/anthropic";
const llm = new ChatAnthropic({
  model: "claude-3-5-sonnet-20240620",
  temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/community 
yarn add @langchain/community 
pnpm add @langchain/community 
Add environment variables
FIREWORKS_API_KEY=your-api-key
Instantiate the model
import { ChatFireworks } from "@langchain/community/chat_models/fireworks";
const llm = new ChatFireworks({
  model: "accounts/fireworks/models/llama-v3p1-70b-instruct",
  temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/mistralai 
yarn add @langchain/mistralai 
pnpm add @langchain/mistralai 
Add environment variables
MISTRAL_API_KEY=your-api-key
Instantiate the model
import { ChatMistralAI } from "@langchain/mistralai";
const llm = new ChatMistralAI({
  model: "mistral-large-latest",
  temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/groq 
yarn add @langchain/groq 
pnpm add @langchain/groq 
Add environment variables
GROQ_API_KEY=your-api-key
Instantiate the model
import { ChatGroq } from "@langchain/groq";
const llm = new ChatGroq({
  model: "mixtral-8x7b-32768",
  temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/google-vertexai 
yarn add @langchain/google-vertexai 
pnpm add @langchain/google-vertexai 
Add environment variables
GOOGLE_APPLICATION_CREDENTIALS=credentials.json
Instantiate the model
import { ChatVertexAI } from "@langchain/google-vertexai";
const llm = new ChatVertexAI({
  model: "gemini-1.5-flash",
  temperature: 0
});
import { ChatPromptTemplate } from "@langchain/core/prompts";
import {
  RunnablePassthrough,
  RunnableSequence,
} from "@langchain/core/runnables";
import { StringOutputParser } from "@langchain/core/output_parsers";
import type { Document } from "@langchain/core/documents";
const prompt = ChatPromptTemplate.fromTemplate(`
Answer the question based only on the context provided.
Context: {context}
Question: {question}`);
const formatDocs = (docs: Document[]) => {
  return docs.map((doc) => doc.pageContent).join("\n\n");
};
// See https://js.langchain.com/v0.2/docs/tutorials/rag
const ragChain = RunnableSequence.from([
  {
    context: retriever.pipe(formatDocs),
    question: new RunnablePassthrough(),
  },
  prompt,
  llm,
  new StringOutputParser(),
]);
See our RAG tutorial for more information and examples on RunnableSequence's like the one above.
await ragChain.invoke("...");
API referenceβ
For detailed documentation of all AmazonKnowledgeBaseRetriever features and configurations head to the API reference.
Relatedβ
- Retriever conceptual guide
- Retriever how-to guides